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Abstract

Eringen and Suhubi [1], [2] introduced the general theory of
micro-elasticity whereby the local deformations of material points
are taken into account, the necessity for this consideration being
the nonhomogeneity of the material at the local level.

One of the problem areas of micro-elasticity remaining is the
determination of the material comnstants (either analytically or
experimentally) which even for the linear isotropic theory number
eighteen., In addition, an inertia constant must be determined.

This report is a study of the relationship of a linear micro-
morphic material to linear classically elastic constituents and
investigates the possibility of obtaining the material constants

from the properties of the constituents.
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1. Introduction

Using relationships given by Eringen and Suhubi [1], [2], it is
shown that the strain energy of a linear micromorphic body is equal
to the sum of the energies of the constituents when the constituents

are assumed to be linear classically elastic. That is,

Wav = [ w'dv' (1.1)
dv
where W is the macro-strain energy density, dv the macro-differential
element, W' the micro-strain energy density, and dv' the micro-
differential element. Assuming the constituents to be also isotropic,

W' is given by the relation

1 1
W' ==A'd, d) , +ut @', u', , +u', o u'. ). 1.2

2 1,1 7,] 2 ( 1, 1,3 1i,] Jsl) ( )
A' and u' are the Lame constants for the constituent (the value of each

depends on which constituent is present). Here u'i i = 8u'i/3x'j, the
’

x'j are rectangular coordinates of a point in the body, and u'i is the

displacement vector at a point in the micro-volume.

By substituting (1.2) into (1.1) and using an expression for u'i i
b

in terms of kinematical macro-quantities, the right-hand side of (1.1)
can be expressed in terms of these macro-quantities and properties of

the constituents. The left-hand side is given by Eringen and Suhubi in
terms of the macro-quantities and micromorphic material moduli. Equating
like terms, relationships for the micromorphic material moduli in terms
of constituent properties are obtained.

The special case of a two constituent isotropic micromorphic
material is considered in detail. For this case, all constituent properties
except three are easily evaluated. Determination of the eighteen
micromorphic material moduli and the micromorphic inertia constant, plo,
is therefore reduced to the experimental determination of these three

unknowns.



2. Strain Energy Densities

A differential element, dv, of the micfbmorphic material consists
of many micro-differential elements, dv', as shown in figure 1 (where
different shaded areas represent different constituents). It is
assumed that each constituent is an elastic solid.

Upon deformation, the center of mass of dv moves from position X
to x, and that of dv' goes from position X' to x'. i

i According to a first order approximaEion, Ehe displacement
vector,u', of X' can be represented in terms of the displacement of

the mass center, u, as follows.

u'. =u +u

k k krel (2.1)

= Ut Oty

Here ¢k£ is a function of x and time, and El is the relative position

vector of x' with respect to x as shown in figure 1.
This ;otion is identical~to that described in [1] after
linearization.
Consider the total strain energy of an arbitrary volume, V, with
surface S of the micromorphic material obtained by summing the strain

energies of the constituents.
1
= LI TR L 1 [ . .
E= [ [ Wav / 7 i85V (2.2)
V dv V dv

W', t'ij’ and e'ij are the constituent strain energy density,
stress tensor, and strain tensor respectively at any point x'. Upon
carrying the linear strain measure

' = l 1 '
e i3 5 (u i3 + u j,i) (2.3)






into expression (2.2) we obtain

' — ' ' 1 1 '
=¢t'. ,u', .dv' = = [(e',.u'),, - t",, .u' lav'.
‘f, d{, 2 " ij i,] ‘f, d‘f, 2 L ij 1)’3 ij,3J 1]
(2.4)
Since the surface tractions and u'i are continuous across the
surface of each dv', the first volume integral can be changed to a
surface integral.
1 1
E== [ [ t'.u'.da', -5 [ [ t'.. .u.av' . (2.5)
2 S ds ij i i 2 Vv dv ij,i 1
ds is a differential surface area of S and da'j = n'jda' where n'j is
the outer normal of a micro-differential area da' (also on S).
Upon substituting (2.1) into (2.5) and remembering that u, and
¢ik are independent of integration over ds or dv, we obtain
2E = t' da + ¢, t',.g da',]
é f ¢1k d£ jivk T j
- t' '+ ! . 2.6
‘f][uij 51,599 F by jt gdv] (2.6)
The following terms (averaged quantities) defined by Eringen and
Suhubi [1] are now employed.
Jt'..da', =t . da, ,
YA E S B E
t',.g da"', =21, da,
d£ jlgk a i jik aJ ’ (2.7)
t', .dv' £ s, .dv .
dv i] 1]



da, = n,ds where n, is the outer normal of ds. t,,, s,., and A,
I h| ij ji

J ij

are referred to as stress quantities.

k

It can also be shown (see appendix A) that

d{ t 1,597 = t54,397

(2.8)
! ' = —_—
d£ t ji,jgkdv (tki Sy + Ajik,j)dv .
For an unprimed quantity, an index following a comma represents
partial differentiation with respect to xj e.g. tji j = atji
’ 3 ax. .
J
Using (2.7) and (2.8), expression (2.6) becomes
2E = é [uitji + ¢ikxjik]daj
(2.9)
- £ [sti,5 * ik s = kg + Ayak, 3219V
Changing the surface integral to a volume integral, (2.9)
becomes
2E = £ [ui’jtji * b, 5 ik T 19 (Epy = Spp)19V- (2.10)
Again we employ linear strain and microstrain measures
=1
3 2 My F e o
13 Tty T
Yijk = ¢ij,k (2.11)
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introduced in [1]. With these, (2.10) now becomes

2E = é [tji(Zeij - eij) - Ajikyikj + sij(eij - eij)]dv .

Therefore, the strain energy density, W, for the micromorphic
material obtained by summing the strain energies of the constituents
is

1
Wo=g tieyy = 59) — 2 Madag T 281515 T Gy

1 1
+(§S..—'§t )

1 1
(t,, - > Sij)e" i3 " €55 " 2 AjikYikj .

Ji 13

This expression can be shown to be equivalent to that given for
the strain energy density, Z, in [2] (see appendix B),.
Therefore, the total strain energy of the micromorphic body can

be obtained by summing the strain energies of the constituents.

(2.12)

(2.13)



3. Extension of Clapeyron's Theorem to Micromorphic Theory

Proceeding in a manner similar to section 2, Clapeyron's Theorem
can be extended to micromorphic theory.

According to Sokolnikoff [3] we have: Clapeyron's Theorem - If
a body is in equilibrium under a given system of body forces Fi and
surface forces Tiv = tvinv’ then the strain energy of deformation is
equal to one~half the work that would be done by the external forces
(of the equilibrium state) acting through the displacements u, from

i
the unstressed to the stressed state, i.e.,

2 % Wdv = £ F,u dv + é tjiuidaj . (3.1)

Applying the theorem to dv of the micromorphic body, and then
summing over the complete body, we have (p' and f'i are the constituent

mass density and body force per mass density respectively).

2 [ Wdv = j Jo'gluav' + [ [e' u' da', . (3.2)

Note again that the tractions and u'i are continuous across

the surface of each dv'. Using equation (2.1) we obtain

2 j Wdv =f [ui [p'f'idv' + q)ik d{r p'f'igde|]

Vv \Y dv

(3.3)

f j t' da + ¢, ik j t' da j] .

S

The definitions (2.7) and the following (also given in [1])
are applied.
f p'f', dv = pfidv,

dv

3.4)

L L ] —_
d{ p'f iEkdv = pzikdv .



P, fi’ and Lik are the mass density, body force per mass density, and
first body moment per mass density respectively of the micromorphic
material.

We have, therefore, the result

2 f Wdv = f [uipfi + ¢ikpzik] dv
\' \'

(3.5)

+ g [uitji+¢ik>\jik]daj .



4, Micromorphic Strain Energy Density in Terms of Constituent Properties

It has been shown in section 2 that the strain energy of a
micromorphic body is equal to the sum of the energies of the constituents,

That is, for the differential element, dv, shown in Figure 1,

Wdv = f W'dv' . (4.1)
dv

W' is obtained from the classical relation

1
1T - =310 1 + y'le! ' . .
W 2 Ale i i3 n'e ije 13 (4.2)
A' and u' are the Lamé constants for the constituent (the value of each
depends on which constituent is present).
Carrying (2.3) into (4.2) we have

1 1
W' ==2aA"d", ,u'., ., +=u'C", ,u', . +u", ,u'. ). 4.3
2 i, i 3,3 2 uh( i,] 1,] 1,] J,l) ( )

It is necessary to find an expression for u':.L j in terms of
’

macro-quantities as is the case for u'i introduced in [1], i.e.

' = . 4
u'. = u',(x j t) ui(xj’t) + d>ij(xj t)Ej (4.4)

>

If we consider u; expressible as a function of (x} t) then clearly
b ]

for (4.4) to be valid, we must have

x, = xi(xa) s £, = Ei(X'j) . (4.5)

Differentiating u'i by the chain rule gives

)
au', ox du, dgy
u.:.L = i k + i K
>J axk ax|j agk axlj
I LT %y 98k
= (—= + £,) —— + ¢., —+
3x ax Y ik ax
ko %k j j



where

The following relationship between x',, x,, and &, is now used, [1].
i i i ’

x', =x, +&, .
i i i

Differentiating with respect to x'j we have

ij ij ij
or

H,,=6., -A , .
ij ij ij

Expression (4.6) for u'i i now becomes
3

' = -
8,5 % et Oue b T g 0y

In general, Akj is a function of x'j. However, an examination
of the analysis which follows shows use of a non-constant value would

give material moduli for the micromorphic material which are functions

of position, That is, the material would not be homogeneous.

exclude this case and consider Akj constant.

10
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(4.7)

(4.8)

(4.9)

(4.10)

(4.11)



Using (4.11) and (4.3) in (4.1) we obtain

- 1. -
Wdv = d£ { 2 A [AkiAmj[ui,kuj,m + 2ui,k¢jp,mgp 2ui,qujm

il,k¢jp:m P jp,m’p

t 2 Al s F 05%ap,05p T gstad * fuatyy)

Lo -
+ 2 H [Aijmj [ui,kui,m + 2ui,k¢ip,mgp 2ui,k¢im

+ ¢iz,kq)ip,mglgp - 2¢im¢ip,k£p + ¢ik¢im]

+ 2 A . [u

13 1% k%55 T %i3%p,15 T a®ig!] T %4505

AR Y 1w T 2% ke, et T 2, kb

£,6_ = 2¢

* 050,1%5p,m%2%p

jm¢ip,kEp + ¢ik¢jm]

28 Tuy by bein 1 Bp T iyl T 0y505 110
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We note that u, i ¢ 3 and their derivatives and Ak are

independent of the 1ntegrat10n variables. The following integrals

are introduced for convenience. Some of these will be evaluated

explicitly later.

J Atav' = 2Bdv , Ju'av' =2cdv ,
dv dv
] T = t ' =
d{ A'E £ dv' 22D dv d{ WE g dv' = 2E dv,
J Ag_dv' = 2F dv , Jowe dv' = 26 dv .
dv dv

(4.13)

The micromorphic strain energy density now takes the following form.

W= BIALA T % m T 29 1% i T 2 [y 0y T 9500

ki mj

+ C{Aijmj[ui,ku:'L,m B 2ui,k¢im + 1k¢1m 2Ak [u

+ Dlp{AkiAmj[¢iZ,k¢jp,m]}
+ Ezp{Aijmj[¢il,k¢ip,m] + Aijmi[¢iz,k¢jp,m]}
A 128 k8 5,m T Paktyp,md F PAkal®g5%p,1 )

F O A A [0y b m T P ®ip ] T 2 L0505 1]

+Ak3 m1[2u k jp,m 2¢jm¢ip,k] + Ak [¢31¢1p k]} '

12

+ Aijmi[ui,kuj,m - 2ui,k¢jm + ¢ik¢jm] + 2Akj[ul k¢3i - ¢ik¢j

. - ¢ik¢

N

ij]

+9¢

+ ¢..¢

ii'jj

+ ¢..9

13743
13%51

(4.14)

}



Expression (4.14) must now be compared with the linearized form of
the theory developed by Eringen and Suhubi [1], [2]. 1In that development,
the strain measures defined by (2.11) are utilized. The most general
expression for W in the linear theory of micromorphic elastic solids

must be a quadratic expression in these strain measures. Therefore,

W =-l c e,..e +-l b €, .€ +-L a
2 %i3ke®i3%e T 2 Pi3ke®i3%ke T 2 2ijkemn'ijk mn
(4.15)
i ntiem T fgren 15%%m T 814kef14%Kke
where the following symmetries must hold.
“ijke T Skeij -~ Sjike’
Piyke = Prady
qiikemn - *emnijk ° (4.16)

fijkzm - fijkml ’
Bijka ~ Bijek °

Substituting (2.11) into (4.15) and comparing with (4.14), it is
found that the symmetry conditions, (4.16), are satisfied if Aij is of

a special form, namely

A,. = AS, . (4.17)
ij ij .
This is a sufficient condition and has not been shown to be a
necessary condition. Further investigation into the generality
of Aij is needed.
With (4.17) imposed, the following expressions are found for

the constants in (4.15).

13



= 9a2
3 gkemn = 2A7I05000i800 ¥ Binnibie T Oiefnsd ]
dijkam = "PAQAIIF 8 855 + GO i8ap + SpgSqd] s
- “AV2 R
bijkl 2(1-4) [stiszk + C(Gjlaki + 6jk62i)] ,
(4.18)
fklmij = _2A(2A_1)[F26ij6mk + G2<6im6jk + Giksmj)] s
gklij = 2(2A.—l)(1—A)[BcS:.LjGSLk + C(6ildkj + Gikézj)] s
= ~1}2
c1 58 2(2A-1) [Béijskl + C(6i26jk + 5ik6j2)] .
For the case where the micromorphic material is isotropic, the
following conditions must be imposed.
= — 0 Py
Fl Gl
Dij = Daij s (4.19)
E.. = E§., .
1] 1]

Using (4.17) and (4.19), expression (4.14) can be compared with
the expression of energy for a linear isotropic micromorphic material
[2, pp. 396, 397]. The material moduli of Eringen and Suhubi, A ,u,n,

T, 0, v, K, Ti, Té, cesvesesssy T71 in terms of the constituent

properties are found to be

A = 2(2a-1)%B , n = 2(2a-0% ,

T = 2(2A-1)(1-A)B . o = 2(2A-1) (1-A)C ,

n = 2A(1-A)B , v = 2a(1-A)C , (4. 20)
Kk = 2A(1-A)C , T, = 2A%D -

T, = 2A%E , Ty T 2A%E ,

=0 (i=1, 2,3, 4, 5, 8, 9, 10) .

14



Expressions for B, C, D, E and the inertia term, pIo, which appears
in [1] and [2] are now considered for a material made of two constituents.

The following operations may be performed on (4.13)1.

2
f Atdv' = ¢ f APav' = kl f dv' + A2 f dv'
dv p=1 va dvl dv2
(4.21)
= 31 2
= A dvl + A dv2
where Al and A2 are the first Lamé constant of materials 1 and 2
respectively.
Let g be the volume density of material 1. Then
- Volume 1 _ dvl 1-r = Volume 2 _ dv2 (4.22)
& Total Volume  dv ° & Total Volume ~ dv ° :
Therefore,
2Bdv = [Alz + A2(1-2)]dv , (4.23)
or
. 2
2B = A"z + Ac(1l-z) . (4.24)
In a similar manner, one obtains (ul and u? are the second
Lamé constant for materials 1 and 2 respectively)
1 2
2C =y + u4(l-z) . (4.25)

It is thus seen that 2B and 2C are determined by the "Rule of Mixtures".
Consider now the following operations on (4.13)3 for the isotropic

microelastic material.

T 1

208 _, dv dj A'E g dv
v
2

P '
[ ATg g av
p=1 dvp

15



1 ] 2 1
AT E £ dv' + ) J £ Eydv
dvl dv2

Z[AlQ + AZR]Gmkdv

where

= ' = '
2Q6mkdv = f Emgkdv . 2R6mkdv f Emikdv .
dvl dv2

Therefore,
D = alQ + A2R
In a similar manner one can obtain
E = uQ + u?R
Noting that the inertia term, pIO, is given by [1]
PL 8, dv = di p'E £, dv'

. 2 s \
one obtains (p1 and p~ are the mass densities for materials 1 and 2

respectively)

1 2
pI_ = 2[p7Q + p"R] .

This completes the determination of the micromorphic material

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

constants and pIo for a two constituent material. All quantities except

2 1 2

1 1 2
A, Q, and R can be found once g, p, p, A, A, ¥, and 4 are given.

A, Q, and R are left for experimental investigationm.

A physical interpretation of A can be made. Conditions (4.17) and

(4.10) used in (4.7) give

s Koy = (1-8)8, ;-

16
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Integration, setting the arbitrary integration constants equal to

zero gives
X Ax x ? Ek (1-A)x Kk *

When A goes to unity, Ek goes to zero and X becomes x'k. Then,

(4.33)

from (4.27), Q and R become zero, and therefore, from (4.28) and (4.29),

D and E become zero. Looking at (4.20), it is seen that all constants

except A and u go to zero. A and u, however, are calculated by the "Rule

of Mixtures" and are actually just the Lame constants for the material
which now behaves as a classically elastic material.

It appears then that A is a measure of whether a material behaves

as classically elastic or exhibits other phenomena. Also, since A relates

x, to x'k,

it appears to be a measure of how large dv (which is actually

considered finite) must be taken such that averaging is possible--however,

there must be a limit to how large dv can be taken. With the above

considerations in mind, it is conjectured that

1<A<M ,

where M is some finite wvalue.

A is probably very close to unity since most tensile tests on

(4.34)

composite materials give close agreement with the '"Rule of Mixtures' values.

As a final step, using (4.20), the linear isotropic micromorphic

displacement equations of motion [2] may be written as

2A% (B+C)u + 2AZCuZ + 2A(1-A)Bo
]

k, k2 Kk Kk, %

+ ZA(l—A)C(¢£k + ¢kl)’k + sz = Pu,

2A2 (DHE) ¢ + 2A% - 2(A-1)2%B¢

km, k2 E¢om, kk kkme

2
-2(a-1) C(¢m2 + ¢Zm) - ZA(l—A)Buk,kaR

—2A(1—A)C(um . + uz’m) + plzm = p10¢2m .

E]

17
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I1)

1 _ 1 '
é d\fr 1,3 é dg SEER
- .é ty1 925 = é ji,3 ¥
Therefore,
f oL dv =¢t,, . dv
dv Ji,] Ji,]
| T 1
AT ARl
= - v, dv' . '
é xk { ji, v+ é d£ t 1,3 X k
= - d 1 1 -
‘frxk tji,J v + ‘f] d‘fr [(t ji X k):
= - £ thJi,Jdv + f d£ t'Jl kda'j - é Sii
= - A d + '“ t ' 1
é xkt:I . v é Xy di t ji da + é dg t lEkda
- £ Skidv
= - { xktji,Jdv + f X tJ daJ + é Kjlk 4 -
= - é thji .dv + f xkt dv + é tkidv
+ [ Mg v - [ sy dv
v J1ik,] v i
‘f, (g * Ayik,5 ~ Sk 9V



Therefore,

' L
TR

av ki

i * Aga,5 ~

21

Ydv .



Appendix B

A comparison of expressions can be made in the following way.

In the linear theory of [1] and [2], the stress components are

given in terms of the derivatives of the strain energy density.

I oFr or oL ok
tkl T de + de ’ ke T e + de + de
kg k2 k& kg Lk
Aklm = aaz *
Yka

Therefore, we obtain

Bp % Sky =% 32; +% ( 32; - azik )
S T tre T azzk

Then,

(tji - %.slj) eij +'% (SlJ - tji) €13 - %.AjikYikJ
-3 32; ®4 +% az; €13 +% 3$ikj Yikg = %

The last equality is obtained from Euler's relation for homogeneous

functions [4] since I is homogeneous quadratic in its arguments.

22 NASA-Langley, 1969 —— 32
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